The

Complete
Reference

114

C++: The Complete Reference

programming. There are three reasons for this: First, pointers provide the means

by which functions can modify their calling arguments. Second, pointers support
dynamic allocation. Third, pointers can improve the efficiency of certain routines. Also,
as you will see in Part Two, pointers take on additional roles in C++.

Pointers are one of the strongest but also one of the most dangerous features in
C/C++. For example, uninitialized pointers (or pointers containing invalid values)
can cause your system to crash. Perhaps worse, it is easy to use pointers incorrectly,
causing bugs that are very difficult to find.

Because of both their importance and their potential for abuse, this chapter examines
the subject of pointers in detail. *

The correct understanding and use of pointers is critical to successful C/C++

What Are Pointers?

A pointer is a variable that holds a memory address. This address is the location of
another object (typically another variable) in memory. For example, if one variable
contains the address of another variable, the first variable is said to point to the second.
Figure 5-1 illustrates this situation.

Memory Variable in
address memory

1000 1002

1001

1002

1003

1004

1005

1006

Memory

Figure 5-1. One variable points to another

Chapter 5: Pointers

___| Pointer Variables

If a variable is going to hold a pointer, it must be declared as such. A pointer declaration
consists of a base type, an *, and the variable name. The general form for declaring a
pointer variable is

type *name;

where type is the base type of the pointer and may be any valid type. The name of
the pointer variable is specified by nane.

The base type of the pointer defines what type of variables the pointer can point to.
Technically, any type of pointer can point anywhere in memory. However, all pointer
arithmetic is done relative to its base type, so it is important to declare the pointer correctly.
(Pointer arithmetic is discussed later in this chapter.)

The Pointer Operators

The pointer operators were discussed in Chapter 2. We will take a closer look at them
here, beginning with a review of their basic operation. There are two special pointer
operators: * and &. The & is a unary operator that returns the memory address of

its operand. (Remember, a unary operator only requires one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's
internal location of the variable. It has nothing to do with the value of count. You can
think of & as returning "the address of." Therefore, the preceding assignment statement
means "m receives the address of count.”

To understand the above assignment better, assume that the variable count uses
memory location 2000 to store its value. Also assume that count has a value of 100.
Then, after the preceding assignment, m will have the value 2000.

The second pointer operator, *, is the complement of &. It is a unary operator that
returns the value located at the address that follows. For example, if m contains the
memory address of the variable count,

places the value of count into q. Thus, q will have the value 100 because 100 is stored
at location 2000, which is the memory address that was stored in m. You can think of
* as "at address.” In this case, the preceding statement means "q receives the value at

address m.”

115

116 C++: The Complete Reference

Both & and * have a higher precedence than all other arithmetic operators except
the unary minus, with which they are equal.

You must make sure that your pointer variables always point to the correct type of
data. For example, when you declare a pointer to be of type int, the compiler assumes
that any address that it holds points to an integer variable—whether it actually dees
or not. Because you can assign any address you want to a pointer variable, the
following program compiles without error, but does not produce the desired result:

#include <stdio.h>

int main(void)

{
double x = 100.1, vy;
int ‘*p;

/* The next statement causes p (which is an
integer pointer) to point to a double. */

p = (int *)&x;

/* The next statement does not operate as
expected. */
y = *p;

printf ("$f", y); /* won't output 100.1 */
return 0;

This will not assign the value of x to y. Because p is declared as an integer pointer,
only 4 bytes of information (assuming 4-byte integers) will be transferred to y, not
the 8 bytes that normally make up a double.

:) . ‘ I In C++, it is illegal to convert one type of pointer into another without the use of an
explicit type cast. In C, casts should be used for most pointer conversions.

__l Pointer Expressions

In general, expressions involving pointers conform to the same rules as other
expressions. This section examines a few special aspects of pointer expressions.

Chapter 5: Pointers

Pointer Assignments

As with any variable, you may use a pointer on the right-hand side of an assignment
statement to assign its value to another pointer. For example,

#include <stdio.h>

int main(void)
{

int x;

int *pl, *p2;

pl = &x;
p2 = pl;
printf (" %p", p2); /* print the address of x, not x's value! */

return 0;

Both p1 and p2 now point to x. The address of x is displayed by using the %p printf()
format specifier, which causes printf() to display an address in the format used by the
host computer.

Pointer Arithmetic

There are only two arithmetic operations that you may use on pointers: addition
and subtraction. To understand what occurs in pointer arithmetic, let p1 be an
integer pointer with a current value of 2000. Also, assume integers are 2 bytes long.
After the expression

/ pl++;

p1 contains 2002, not 2001. The reason for this is that each time p1 is incremented, it
will point to the next integer. The same is true of decrements. For example, assuming
that p1 has the value 2000, the expression

pl--;

causes p1 to have the value 1998.
Generalizing from the preceding example, the following rules govern pointer
arithmetic. Each time a pointer is incremented, it points to the memory location

117

C++: The Complete Reference

of the next element of its base type. Each time it is decremented, it points to the
location of the previous element. When applied to character pointers, this will
appear as "normal” arithmetic because characters are always 1 byte long. All other
pointers will increase or decrease by the length of the data type they point to. This
approach ensures that a pointer is always pointing to an appropriate element of its
base type. Figure 5-2 illustrates this concept.

You are not limited to the increment and decrement operators. For example, you
may add or subtract integers to or from pointers. The expression

makes p1 point to the twelfth element of p1's type beyond the one it currently points to.

Besides addition and subtraction of a pointer and an integer, only one other
arithmetic operation is allowed: You may subtract one pointer from another in order to
find the number of objects of their base type that separate the two. All other arithmetic
operations are prohibited. Specifically, you may not multiply or divide pointers; you
may not add two pointers; you may not apply the bitwise operators to them; and
you may not add or subtract type float or double to or from pointers.

char * ch=(char *)3000;
int* 1=(int*)3000;
ch 3600
- i
ch+1 3001
ch+2 3002
- 1+ 1
ch+3 3003
ch+4 3004
- i+ 2
ch+5 3005
Memory i
Figure 5-2. All pointer arithmetic is relative to its base type (assume 2-byte
integers) !

Chapter 5: Pointers

Pointer Comparisons

You can compare two pointers in a relational expression. For instance, given two
pointers p and q, the following statement is perfectly valid:

if(p<g) printf({"p points to lower memory than Jg\n");

Generally, pointer comparisons are used when two or more pointers point to
a common object, such as an array. As an example, a pair of stack routines are
developed that store and retrieve integer values. A stack is a list that uses first-in,
last-out accessing. It is often compared to a stack of plates on a table—the first
one set down is the last one to be used. Stacks are used frequently in compilers,
interpreters, spreadsheets, and other system-related software. To create a stack,
you need two functions: push() and pop(). The push() function places values on
the stack and pop() takes them off. These routines are shown here with a simple
main() function to drive them. The program puts the values you enter into the stack.
If you enter 0, a value is popped from the stack. To stop the program, enter —1.

#include <stdio.h>
#include <stdlib.h>

#define SIZE 50

void push(int 1);
int pop(void);

int *tos, *pl, stack[SIZE];
int main(void)

{

int value;

tos = stack; /* tos pointsg to the top of stack */
pl = stack; /* initialize pl */
do {

'

printf ("Enter value: "j;

scanf ("%d", &value);

if (value!=0) push(value);

else printf("value on top is %d\n", pop());
} while(value!=-1);

C++: The Complete Reference

return 0;

void push(int i)
{
pl++;
if (pl==(tos+SIZE)) {
printf("Stack Overflow.\n");
exit(1l);

int pop(void)
{
if(pl==tos) {
printf ("Stack Underflow.\n");
exit(1l);
:
pl--;
return *(pl+1l);

You can see that memory for the stack is provided by the array stack. The pointer
pl is set to point to the first element in stack. The p1 variable accesses the stack. The
variable tos holds the memory address of the top of the stack. It is used to prevent
stack overflows and underflows. Once the stack has been initialized, push() and
pop() may be used. Both the push() and pop() functions perform a relational test
on the pointer p1 to detect limit errors. In push(), p1 is tested against the end of
stack by adding SIZE (the size of the stack) to tos. This prevents an overflow. In
pop(), p1 is checked against tos to be sure that a stack underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the
statement would look like this:

E return *pl +1;

which would return the value at location p1 plus one, not the value of the location p1+1.

Chapter 5: Pointers 121

___| Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this program
fragment:

char str[80], *pl;
prl = str;

Here, p1 has been set to the address of the first array element in str. To access the fifth
element in str, you could write

str[4]

or

*(pl+4)

Both statements will return the fifth element. Remember, arrays start at 0. To access
the fifth element, you must use 4 to index str. You also add 4 to the pointer p1 to
access the fifth element because p1 currently points to the first element of str. (Recall
that an array name without an index returns the starting address of the array, which
is the address of the first element.)

The preceding example can be generalized. In essence, C/C++ provides two methods
of accessing array elements: pointer arithmetic and array indexing. Although the
standard array-indexing notation is sometimes easier to understand, pointer arithmetic
can be faster. Since speed is often a consideration in programming, C/C++ programmers
commonly use pointers to access array elements.

These two versions of putstr()—one with array indexing and one with pointers—
illustrate how you can use pointers in place of array indexing. The putstr() function
writes a string to the standard output device one character at a time.

/* Index s as an array. */
void putstr(char *s)
{

register int t;

for(t=0; slt]; ++t) putchar(sft]);

422 C++:The Complete Reference

/* Access s as a pointer. */

void putstr (char *s)

{

while(*s) putchar (*s++);

Most professional C/C++ programmers would find the second version easier to
read and understand. In fact, the pointer version is the way routines of this sort

are commonly written in C/C++.

Arrays of Pointers

Pointers may be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[107];

To assign the address of an integer variable called var to the third element of the
pointer array, write

l x[2] = &var;

To find the value of var, write

*x[2]

If you want to pass an array of pointers into a function, you can use the same
method that you use to pass other arrays—simply call the function with the array
name without any indexes. For example, a function that can receive array x looks

like this:

void display_array(int *g[])
{

int t;

for(t=0; t<10; t++)
printf("%a ", *qglt]);

|

Chapter 5: Pointers

Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to
integers. Therefore you need to declare the parameter q as an array of integer pointers,
as just shown. You cannot declare q simply as an integer pointer because that is not
what it is.

Pointer arrays are often used to hold pointers to strings. You can create a function
that outputs an error message given its code number, as shown here:

void syntax_error (int num)

{
static char *err[] = {
"Cannot Open File\n",
"Read Error\n",
"Write Error\n",
"Media Failure\n"
Y

The array err holds pointers to each string. As you can see, printf() inside
syntax_error() is called with a character pointer that points to one of the various
error messages indexed by the error number passed to the function. For example,
if num is passed a 2, the message Write Error is displayed.

As a point of interest, note that the command line argument argyv is an array of
character pointers. (See Chapter 6.)

Multiple Indirection

You can have a pointer point to another pointer that points to the target value. This
situation is called multiple indirection, or pointers to pointers. Pointers to pointers can
be confusing. Figure 5-3 helps clarify the concept of multiple indirection. As you can
see, the value of a normal pointer is the address of the object that contains the value
desired. In the case of a pointer to a pointer, the first pointer contains the address of
the second pointer, which points to the object that contains the value desired.

Mulitiple indirection can be carried on to whatever extent rquired, but more than a
pointer to a pointer is rarely needed. In fact, excessive indirection is difficult to follow
and prone to conceptual errors.

Note Do not confuse multiple indirection with high-level data structures, such as linked lists,

that use pointers. These are two fundamentally different concepts.

C++: The Complete Reference

Pointer Variable

address —> value

Single Indirection

Pointer Pointer Variable

address value

A4
A\ 4

address

Multiple Indirection

Figure 5-3. Single and multiple indirection

A variable that is a pointer to a pointer must be declared as such. You do this by
placing an additional asterisk in front of the variable name. For example, the following
declaration tells the compiler that newbalance is a pointer to a pointer of type float:

l float **newbalance;

You should understand that newbalance is not a pointer to a floating-point number but
rather a pointer to a float pointer.

To access the target value indirectly pointed to by a pointer to a pointer, you must
apply the asterisk operator twice, as in this example:

#include <stdio.h>

int main(void)
{

int x, *p, **q;

x = 10;
P = &X;
q = &p;

printf("$d", **qg); /* print the value of x */

return 0;

Here, p is declared as a pointer to an integer and q as a pointer to a pointer to an
integer. The call to printf() prints the number 10 on the screen.

Chapter 5: Pointers 125

___| Initializing Pointers

After a nonstatic local pointer is declared but before it has been assigned a value,
it contains an unknown value. (Global and static local pointers are automatically
initialized to null.) Should you try to use the pointer before giving it a valid value,
you will probably crash your program—and possibly your computer's operating
system as well—a very nasty type of error!

There is an important convention that most C/C++ programmers follow when
working with pointers: A pointer that does not currently point to a valid memory
location is given the value null (which is zero). By convention, any pointer that is
null implies that it points to nothing and should not be used. However, just because
a pointer has a null value does not make it "safe.” The use of null is simply a convention
that programmers follow. It is not a rule enforced by the C or C++ languages. For
example, if you use a null pointer on the left side of an assignment statement, you still
run the risk of crashing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null pointer to
make many of your pointer routines easier to code and more efficient. For example,
you could use a null pointer to mark the end of a pointer array. A routine that accesses
that array knows that it has reached the end when it encounters the null value. The
search() function shown here illustrates this type of approach.

/* look up a name */
int search(char *pl], char *name)

{

register int t;

for(t=0; plt]; ++t)
if(!strcp(plt], name)) return t;

return -1; /* not found */

The for loop inside search() runs until either a match is found or a null pointer
is encountered. Assuming the end of the array is marked with a null, the condition
controlling the loop fails when it is reached.

C/C++ programmers commonly initialize strings. You saw an example of this in the
syntax_error() function in the section "Arrays of Pointers.” Another variation on the
initialization theme is the following type of string declaration:

char *p = "hello world";

As you can see, the pointer p is not an array. The reason this sort of initialization
works is because of the way the compiler operates. All C/C++ compilers create

C++: The Complete Reference

what is called a string table, which is used to store the string constants used by
the program. Therefore, the preceding declaration statement places the address
of hello world, as stored in the string table, into the pointer p. Throughout a
program, p can be used like any other string (except that it should not be altered).
For example, the following program is perfectly valid:

#include <stdio.h>
#include <string.h>

char *p = "hello world";

int main(void)

{
register int t;
/* print the string forward and backwards */
printf (p);

for(t=strlen(p)-1; t>-1; t--) printf("%c", plt]);

return 0O;

In Standard C++, the type of a string literal is technically const char *. But C++
provides an automatic conversion to char *. Thus, the preceding program is still valid.
However, this automatic conversion is a deprecated feature, which means that you
should not rely upon it for new code. For new programs, you should assume that string
literals are indeed constants and the declaration of p in the preceding program should
be written like this.

const char *p = "hello world";

Pointers to Functions

A particularly confusing yet powerful feature of C++ is the function pointer. Even
though a function is not a variable, it still has a physical location in memory that
can be assigned to a pointer. This address is the entry point of the function and it is
the address used when the function is called. Once a pointer points to a function, the
function can be called through that pointer. Function pointers also allow functions
to be passed as arguments to other functions.

You obtain the address of a function by using the function’'s name without any
parentheses or arguments. (This is similar to the way an array's address is obtained

Chapter 5: Pointers 127

when only the array name, without indexes, is used.) To see how this is done, study
the following program, paying close attention to the declarations:

#include <stdio.h>
#include <string.h>

void check(char *a, char *b,
int (*cmp) (const char *, const char *));

int main(void)
{ N
char s1[80}, s2[80];
int (*p) (const char *, const char *);

p = strcmp;

gets(sl);
gets(s2);

check(sl, s2, p);
return 0;
void check(char *a, char *b,
int (*cmp) (const char *, const char *))
printf ("Testing for equality.\n");
if (! (*cmp) (a, b)) printf("Equal"};

else printf ("Not Equal");
) .

When the check() function is called, two character pointers and one function pointer
are passed as parameters. Inside the function check(), the arguments are declared as
character pointers and a function pointer. Notice how the function pointer is declared.
You must use a similar form when declaring other function pointers, although the
return type and parameters of the function may differ. The parentheses around the
*cmp are necessary for the compiler to interpret this statement correctly.

Inside check(), the expression

(*cmp) (a, b)

C++4+: The Complete Reference

calls stremp(), which is pointed to by cmp, with the arguments a and b. The
parentheses around *cmp are necessary. This is one way to call a function through
a pointer. A second, simpler syntax, as shown here, may also be used.

cmp(a, b);

The reason that you will frequently see the first style is that it tips off anyone reading
your code that a function is being called through a pointer. (That is, that cmp is a
function pointer, not the name of a function.) Other than that, the two expressions
are equivalent.

Note that you can call check() by using stremp() directly, as shown here:

check(sl, s2, strcmp);

This eliminates the need for an additional pointer variable.

You may wonder why anyone would write a program in this way. Obviously,
nothing is gained and significant confusion is introduced in the previous example.
However, at times it is advantageous to pass functions as parameters or to create an
array of functions. For example, when a compiler or interpreter is written, the parser
(the part that evaluates expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform
/O, or access system resources. Instead of having a large switch statement with all
of these functions listed in it, an array of function pointers can be created. In this
approach, the proper function is selected by its index. You can get the flavor of this
type of usage by studying the expanded version of the previous example. In this
program, check() can be made to check for either alphabetical equality or numeric
equality by simply calling it with a different comparison function.

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

void check(char *a, char *b,
int (*cmp) (const char *, const char *));
int numcmp (const char *a, const char *b);

int main(void)
{
char s1[80], s2({80];

|

Chapter 5: Pointers

gets(sl);
gets(s2);

if (isalpha(*sl))

check(sl, s2, strcmp);
else

check(sl, s2, numcmp) ;

return 0;

void check(char *a, char *b,
int (*cmp) (const char *, const char *))

printf("Testing for equality.\n");
if (! {(*cmp) (a, b)) printf("Equal");
else printf("Not Equal");

int numcmp {const char *a, const char *b)
{

if (atoi(a)==atoi(b)) return 0;

else return 1;

In this program, if you enter a letter, stremp() is passed to check(). Otherwise,
numcmp() is used. Since check() calls the function that it is passed, it can use
different comparison functions in different cases.

C's Dynamic Allocation Functions

Pointers provide necessary support for C/C++'s dynamic allocation system. Dynamic
allocation is the means by which a program can obtain memory while it is running.

As you know, global variables are allocated storage at compile time. Local variables
use the stack. However, neither global nor local variables can be added during program
execution. Yet there will be times when the storage needs of a program cannot be
known ahead of time. For example, a program might use a dynamic data structure,
such as a linked list or binary tree. Such structures are inherently dynamic in nature,
growing or shrinking as needed. To implement such a data structure requires that a
program be able to allocate and free memory.

129

130

C++: The Complete Reference

C++ actually supports two complete dynamic allocation systems: the one defined
by C and the one specific to C++. The system specific to C++ contains several
improvements over that used by C, and this approach is discussed in Part Two.

Here, C's dynamic allocation functions are described.

Memory allocated by C's dynamic allocation functions is obtained from the
heap—the region of free memory that lies between your program and its permanent
storage area and the stack. Although the size of the heap is unknown, it generally
contains a fairly large amount of free memory.

The core of C's allocation system consists of the functions malloc() and free().
(Most compilers supply several other dynamic allocation functions, but these two
are the most important.) These functions work together using the free memory region
to establish and maintain a list of available storage. The malloc() function allocates
memory and the free() function releases it. That is, each time a malloc() memory
request is made, a portion of the remaining free memory is allocated. Each time a
free() memory release call is made, memory is returned to the system. Any program
that uses these functions should include the header file stdlib.h. (A C++ program may
also use the C++-style header <cstdlib>.)

The malloc() function has this prototype:

void *malloc(size_t number_of_bytes);

Here, number_of bytes is the number of bytes of memory you wish to allocate. (The
type size_t is defined in stdlib.h as, more or less, an unsigned integer.) The malloc()
function returns a pointer of type void *, which means that you can assign it to any
type of pointer. After a successful call, malloc() returns a pointer to the first byte
of the region of memory allocated from the heap. If there is not enough available
memory to satisfy the malloc() request, an allocation failure occurs and malloc()
returns a null.

The code fragment shown here allocates 1,000 bytes of contiguous memory:
"
char *p;
p = malloc{1000); /* get 1000 bytes */

After the assignment, p points to the start of 1,000 bytes of free memory.

In the preceding example, notice that no type cast is used to assign the return
value of malloc() to p. In C, a void * pointer is automatically converted to the type
of the pointer on the left side of an assignment. However, it is important to understand
that this automatic conversion does not occur in C++. In C++, an explicit type cast is
needed when a void * pointer is assigned to another type of pointer. Thus, in C++, the
preceding assignment must be written like this:

Chapter 5: Pointers

P = (char *) malloc(1000);

As a general rule, in C++ you must use a type cast when assigning (or otherwise
converting) one type of pointer to another. This is one of the few fundamental
differences between C and C++.

The next example allocates space for 50 integers. Notice the use of sizeof to ensure
portability.

int *p;

p = (int *) malloc(50*sizeof (int));

Since the heap is not infinite, whenever you allocate memory, you must check
the value returned by malloc() to make sure that it is not null before using the pointer.
Using a null pointer will almost certainly crash your program. The proper way to
allocate memory and test for a valid pointer is illustrated in this code fragment:

p = (int *) malloc(100);
if('p) {
printf ("Out of memory.\n");
exit(1l);

Of course, you can substitute some other sort of error handler in place of the call to
exit(). Just make sure that you do not use the pointer p if it is null.

The free() function is the opposite of malloc() in that it returns previously allocated
memory to the system. Once the memory has been freed, it may be reused by a subsequent
call to malloc(). The function free() has this prototype:

void free(void *p);

Here, p is a pointer to memory that was previously allocated using malloc(). It is
critical that you never call free() with an invalid argument; otherwise, you will
destroy the free list.

Problems with Pointers

Nothing will get you into more trouble than a wild pointer! Pointers are a mixed
blessing. They give you tremendous power and are necessary for many programs.
At the same time, when a pointer accidentally contains a wrong value, it can be the
most difficult bug to find.

131

132

C++: The Complete Reference

An erroneous pointer is difficult to find because the pointer itself is not the problem.
The problem is that each time you perform an operation using the bad pointer, you are
reading or writing to some unknown piece of memory. If you read from it, the worst
that can happen is that you get garbage. However, if you write to it, you might be
writing over other pieces of your code or data. This may not show up until later in the
execution of your program, and may lead you to look for the bug in the wrong place.
There may be little or no evidence to suggest that the pointer is the original cause of
the problem. This type of bug causes programmers to lose sleep time and time again.

Because pointer errors are such nightmares, you should do your best never to
generate one. To help you avoid them, a few of the more common errors are discussed
here. The classic example of a pointer error is the uninitialized pointer. Consider this
program.

/* This program is wrong. */
int main{void)
{

int x, *p;

x = 10;
*p = Xl
return 0;

This program assigns the value 10 to some unknown memory location. Here is why:
Since the pointer p has never been given a value, it contains an unknown value when
the assignment *p = x takes place. This causes the value of x to be written to some
unknown memory location. This type of problem often goes unnoticed when your
program is small because the odds are in favor of p containing a "safe” address—one
that is not in your code, data area, or operating system. However, as your program
grows, the probability increases of p pointing to something vital. Eventually, your
program stops working. The solution is to always make sure that a pointer is pointing
at something valid before it is used.

A second common error is caused by a simple misunderstanding of how to use
a pointer. Consider the following:

/* This program is wrong. */
#include <stdio.h>

int main(void)

{

Chapter 5: Pointers

x = 10;
P = X;

printf ("%d", *p);

return 0;

The call to printf() does not print the value of x, which is 10, on the screen. It prints
some unknown value because the assignment

is wrong. That statement assigns the value 10 to the pointer p. However, p is supposed
to contain an address, not a value. To correct the program, write

p = &X;

Another error that sometimes occurs is caused by incorrect assumptions about
the placement of variables in memory. You can never know where your data will be
placed in memory, or if it will be placed there the same way again, or whether each
compiler will treat it in the same way. For these reasons, making any comparisons
between pointers that do not point to a common object may yield unexpected results.
For example,

char s[80], vyI[80];
char *pl, *p2;

pl = s;
p2 = Y;
if(pl < p2)

is generally an invalid concept. (In very unusual situations, you might use something
like this to determine the relative position of the variables. But this would be rare.)

A related error results when you assume that two adjacent arrays may be indexed
as one by simply incrementing a pointer across the array boundaries. For example,

int first[10], second[10];
int *p, t;

134 C++: The Complete Reference

p = first;
for(t=0; t<20; ++t) “p++ = t;

This is not a good way to initialize the arrays first and second with the numbers 0
through 19. Even though it may work on some compilers under certain circumstances,
it assumes that both arrays will be placed back to back in memory with first first. This
may not always be the case.

The next program illustrates a very dangerous type of bug. See if you can find it.

/* This program has a bug. */
#include <string.h>
#include <stdio.h>

int main(void)
{
char *pl;
char s{80];

pl = s;
do {
gets(s); /* read a string */
/* print the decimal equivalent of each
character */
while (*pl) printf (" %d", *pl++);

} while(strcmp(s, "done"));

return 0;

This program uses p1 to print the ASCII values associated with the characters
contained in s. The problem is that p1 is assigned the address of s only once. The
first time through the loop, p1 points to the first character in s. However, the second
time through, it continues where it left off because it is not reset to the start of s. This
next character may be part of the second string, another variable, or a piece of the
program! The proper way to write this program is

/* This program is now correct. */
#include <string.h>

Chapter 5: Pointers 135

#include <stdio.h>

int main(void)
{
char *pl;
char s[801;

do {
pl = s;
gets(s); /* read a string */
/* print the decimal equivalent of each
character */
while(*pl) printf (" %d4d", *pl++};

} while(strcmp(s, "done"));

return O;

Here, each time the loop iterates, p1 is set to the start of the string. In general, you should
remember to reinitialize a pointer if it is to be reused.

The fact that handling pointers incorrectly can cause tricky bugs is no reason to
avoid using them. Just be careful, and make sure that you know where each pointer
is pointing before you use it.

